Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 17(5): e202301522, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38305144

RESUMO

The chemovoltaic effect - generation of electronic excitation by exergonic redox reactions - has been observed on metallic surfaces of Schottky junctions and is proving to be pivotal in explaining in detail the momentum conservation relations of chemically active collisions. As shown in this work, it can hold keys for direct chemical energy harvesting by semiconductor solar cells. To study the possibilities of chemovoltaic energy conversion by semiconductors, we have modeled and designed an 'electrolyte-free fuel cell' formed by a GaAs diode that can host electrochemical fuel oxidation and oxidant reduction reactions on its conduction and valence bands and as a result convert renewable chemical energy (as well as light) into electricity. The experimental results show that exposing the surface of a suitably designed solar cell to methanol liquid or vapor in the presence of oxygen or hydrogen peroxide leads to the generation of electrical power.

2.
J Phys Chem Lett ; 13(24): 5648-5653, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35708355

RESUMO

Metal-assisted chemical etching (MACE) is a widely applied process for fabricating Si nanostructures. As an electroless process, it does not require a counter electrode, and it is usually considered that only holes in the Si valence band contribute to the process. In this work, a charge carrier collecting p-n junction structure coated with silver nanoparticles is used to demonstrate that also electrons in the conduction band play a fundamental role in MACE, and enable an electroless chemical energy conversion process that was not previously reported. The studied structures generate electricity at a power density of 0.43 mW/cm2 during MACE. This necessitates reformulating the microscopic electrochemical description of the Si-metal-oxidant nanosystems to separately account for electron and hole injections into the conduction and valence band of Si. Our work provides new insight into the fundamentals of MACE and demonstrates a radically new route to chemical energy conversion by solar cell-inspired devices.

3.
Nanoscale Res Lett ; 11(1): 413, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27644239

RESUMO

Zinc oxide (ZnO) nanorods were manufactured using the aqueous chemical growth (ACG) method, and the effect of thermal acetylene treatment on their morphology, chemical composition, and optical properties was investigated. Changes in the elemental content of the treated rods were found to be different than in previous reports, possibly due to the different defect concentrations in the samples, highlighting the importance of synthesis method selection for the process. Acetylene treatment resulted in a significant improvement of the ultraviolet photoluminescence of the rods. The greatest increase in emission intensity was recorded on ZnO rods treated at the temperature of 825 °C. The findings imply that the changes brought on by the treatment are limited to the surface of the ZnO rods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...